Robust MAV State Estimation Using an M-Estimator Augmented Sensor Fusion Graph
نویسنده
چکیده
Grace Xingxin Gao is an assistant professor in the Aerospace Engineering Department at University of Illinois at Urbana-Champaign. She received her B.S. degree in Mechanical Engineering in 2001 and her M.S. degree in Electrical Engineering in 2003, both at Tsinghua University, China. She obtained her Ph.D. degree in Electrical Engineering at Stanford University in 2008. Before joining Illinois at Urbana-Champaign as an assistant professor in 2012, Prof. Gao was a research associate at Stanford University. Prof. Gao has won a number of awards, including RTCA William E. Jackson Award, Institute of Navigation Early Achievement Award, 50 GNSS Leaders to Watch by GPS World Magazine, and multiple best presentation awards at ION GNSS conferences.
منابع مشابه
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situat...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملRobust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملA Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملVision-based MAV Navigation: Implementation Challenges Towards a Usable System in Real-Life Scenarios
In this workshop, we share our experience on autonomous flights with a MAV using a monocular camera as the only exteroceptive sensor. We developed a flexible and modular framework for realtime onboard MAV navigation fusing visual data with IMU at a rate of 1 kHz. We aim to provide a detailed insight of how our modules work and how they are used in our system. Using this framework, we achieved u...
متن کامل